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Abstract

An expression for the sound power in an annular duct with swirling mean flow is derived in the high-
frequency limit relevant to fan aeroacoustics. The sound power is expressed in terms of the duct normal
modes which are computed for several mean flows. It is shown that the mean flow non-uniformity modifies
both the pressure-dominated modes and the expression for the sound power. The pressure-dominated
modes are not orthogonal and thus one must account for interference between the different radial modes.
The interference effects are small for the case of a potential mean flow. For a vortical mean flow
interference terms may become significant.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The mean flow velocity of fan engines is characterized by significant swirl and radial variations
in both the axial and swirl components. The work done by the fan blades may also produce radial
variations in the total enthalpy. Representative results from a Reynolds-averaged Navier–Stokes
calculation for the circumferentially averaged flow downstream of a fan are shown in Fig. 1. The
large variations in the tip region are associated with the tip vortex shed from the fan.
Current fan noise schemes compute the wave modes and sound power in a constant area

annular duct by assuming the mean flow is axial and uniform [1] or that the annulus is narrow
[2,3]. The normal mode analysis can then be used to determine stator vane counts for optimal
noise control such as cutting off blade passing frequency tone noise [4].
In order to incorporate non-uniform mean flow effects, a normal mode analysis of such flows

must be carried out. Recent studies, to account for swirl, have assumed simple analytic models for
the mean flow swirl which consist of combinations of free vortex and rigid body swirl [5–7]. These
treatments assume uniform total enthalpy and entropy. The results show that the centrifugal and
Coriolis effects create force imbalances which couple the acoustic, vortical and entropic flow
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disturbances. However, for the high frequencies relevant to fan tone noise, the coupling is weak
[6,8], i.e., the acoustic modes have small vorticity content and the vortical modes have small
pressure content. Recently [9], the eigenanalysis has been generalized to flows with non-uniform
enthalpy enabling the study of the effects of non-uniform blade loading distributions on the
propagation of sound.
Often one wishes to determine via experiment or computation the spectral composition and the

time-averaged intensity flux of sound propagating in a duct [10]. The utility of computing the flux
of sound intensity is that, under certain conditions, it is a conserved quantity and so different
measurements of the sound power which are taken at different axial locations can be compared.
Conservation of energy can also be used to understand the process by which acoustic energy is
transferred between a sound wave and the mean field [11] or the effect of convection of an acoustic
source on sound radiation [12]. In order to determine the intensity of sound, we must separate
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Fig. 1. The radial profile of the mean flow in a plane lying between a fan and an exit guide vane. The computational

results were obtained using a Reynolds averaged Navier–Stokes code and show the strongest radial variations in the tip

region of the annulus where the tip vortex of the fan lies. The total enthalpy is shown in (a) and the axial, swirl and

relative velocity are shown in (b), (c) and (d), respectively.
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from the total unsteady field the acoustic field and determine the energy flux of the acoustic waves.
In this paper, we derive an energy relation for acoustic waves propagating in a non-uniform mean
flow and we use the normal mode solutions to compute the sound power.
For small-amplitude disturbances to an isentropic irrotational flow an acoustic energy

conservation equation can be derived from the Euler equations which depends only on first order
quantities [13,14]. The intensity flux which results is conserved. Myers [15,16] derived the acoustic
energy relation directly from the general energy equation and showed that the acoustic energy
represents, to leading order, the energy carried by the unsteady disturbances. In the general case
of a non-uniform mean flow, the time-averaged intensity flux is not conserved.
In order to study non-uniform mean flow effects on the propagation of sound energy, we start,

in Section 3, from the acoustic energy equation for small-amplitude disturbances and derive a
simplified relation valid in the high-frequency limit relevant to fan aeroacoustics. We note that
the non-uniform mean flow, in addition to changing the aerodynamic interaction mechanism and
the acoustic modes, also affects the expression for the acoustic energy. Moreover, as a result of the
non-uniformity of the mean flow the duct radial modes are not orthogonal and therefore
interference between the different radial modes will modify the computed sound intensity. In
Section 4, we compute the acoustic power for a variety of isentropic mean flows and examine the
effect of the mean flow swirl and vorticity on the propagation of acoustic energy in a duct.

2. Mathematical formulation

For a non-viscous, non-heat-conducting perfect gas with constant specific heats, the governing
equations are the Euler equations. The flow variables are decomposed into a sum between their
steady mean values and their unsteady perturbations,

~UU ðx; tÞ ¼ ~UU 0ðxÞ þ~uuð~xx; tÞ; pð~xx; tÞ ¼ p0ð~xxÞ þ p0ð~xx; tÞ;

rð~xx; tÞ ¼ r0ð~xxÞ þ r0ð~xx; tÞ; ð1Þ

where ~xx represents any co-ordinate system, t represents time, ~UU 0; p0; and r0 are the steady mean
velocity, pressure, density, and ~uu; p0 and r0 are the corresponding unsteady perturbation
quantities. The unsteady quantities are assumed to be small such that
fj~uuð~xx; tÞj; jp0j; jr0jg5f~UU 0ð~xxÞ; p0;r0g: We non-dimensionalize with respect to the mean radius of
the duct, rm; the mean density, rm; and speed of sound, cm; at the mean radius.
Substituting into the Euler equations, the equations governing the unsteady variables reduce to

the following non-dimensional coupled system of linear equations [17]:

D0

Dt
r0 þ ð~uu 	 rÞr0 þ r0r 	~uu þ r0r 	 ~UU 0 ¼ 0; ð2Þ

r0
D0

Dt
~uu þ~uu 	 r~UU 0

� �
þ r0ð~UU 0 	 r~UU 0Þ ¼ �rp0; ð3Þ

D0

Dt
p0 þ~uu 	 rp0 þ gp0r 	~uu þ gp0r 	 ~UU 0 ¼ 0; ð4Þ
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where D0=Dt is the mean flow material derivative

D0

Dt
�

@

@t
þ ~UU 0 	 r: ð5Þ

Note the pressure, density and entropy are related by the equation of state and, as a result, the
energy equation can also be expressed in terms of the entropy as

D0

Dt
s0 þ~uu 	 r~SS0 ¼ 0: ð6Þ

The impermeability condition is imposed at the hub and tip radii,

ur ¼ 0: ð7Þ

The mean flow is assumed axisymmetric and, away from the upstream and downstream blade
rows where the geometry is modelled by a constant area annular duct, the axial mean flow
gradients are assumed to be much smaller than the radial gradients. The azimuthal variations in
the flow are then accounted for in the unsteady perturbation quantities. In such a flow region,
mass conservation implies that the radial velocity is small and the non-dimensional mean flow
velocity can be expressed in the form

~UU 0ð~xxÞ ¼ MxðrÞex þ MsðrÞey; ð8Þ

where ex and ey represent unit vectors in the axial and circumferential directions, respectively, and
MxðrÞ ¼ Ux=cm and MsðrÞ ¼ Us=cm: The mean flow is, in general, vortical with the vorticity given
by

~zz0 ¼ r ~UU 0 ¼
1

r

dðrMsÞ
dr

ex �
dMx

dr
ey: ð9Þ

The stagnation enthalpy, velocity, vorticity, temperature and entropy are related by Crocco’s
equation,

rH ¼ ~UU 0 ~zz0 þ T0rS0; ð10Þ

where H is the stagnation enthalpy, T0 is the static temperature and S0 is the entropy.

2.1. Normal mode expansion

Solutions to the linearized Euler equations are obtained in terms of eigenmodes. The normal
mode analysis presented here follows Ref. [9] and is briefly reviewed here. The following Fourier
expansion is assumed:

fr0; ux; ur; uy; p
0gðx; r; y; tÞ

¼
Z

N

�N

XN
m¼�N

XN
n¼1

frmn;XmnðrÞ;TmnðrÞ;RmnðrÞ; pmnðrÞg  eið�otþmyþkmnxÞ do; ð11Þ

where m; and n are integer modal numbers characterizing the circumferential and radial
eigenmodes, respectively. Note that we solve for five variables and the perturbation entropy can
be determined from the pressure and density using the equation of state. Since the equations are
linear, each Fourier component can be considered separately. Substituting Eq. (11) into
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Eqs. (2)–(4) gives the coupled system of equations governing the normal modes:

Lmnrmn �
1

r

d

dr
½ðr0rÞðiRmnÞ� þ r0

m

r
Tmn þ kmnXmn

� �
¼ 0; ð12Þ

r0 LmnXmn �
dMx

dr
iRmn

� �
þ kmnpmn ¼ 0; ð13Þ

r0 LmnTmn �
1

r

d

dr
ðrMsÞiRmn

� �
þ

m

r
pmn ¼ 0; ð14Þ

r0 LmniRmn �
2Ms

r
Tmn

� �
þ
dpmn

dr
�

M2
s

r
pmn ¼ 0; ð15Þ

Lmnpmn �
dp0

dr
þ

gp0
r

� �
ðiRmnÞ þ gp0

m

r
Tmn �

dRmn

dr
þ kmnXmn

� �
¼ 0; ð16Þ

where the convective eigenvalue, Lmn; is defined by the expression

Lmn ¼ �oþ kmnMx þ
mMs

r
: ð17Þ

The boundary condition at the hub and tip radii is

RmnðrÞ ¼ 0: ð18Þ

The normal modes are normalized such thatZ rt=rm

rh=rm

rpmnpn

mn dr ¼ 1; ð19Þ

where * denotes the complex conjugate. Note that unlike the uniform axial mean flow limit this is
not a Sturm–Liouville eigenvalue problem. Therefore, there is no proof of completeness or
orthogonality of the eigenfunctions. Moreover, the acoustic, vortical and entropic modes are
coupled to each other through the mean flow gradients. Discretizing the normal mode equations
leads to an algebraic system of equations of the form

½A�x ¼ kmn½B�x; ð20Þ

where ½A� and ½B� are real matrices resulting from Eqs. (12)–(15) and x is eigenvector representing
the eigenfunctions rmn;Xmn;Tmn; iRmn; and pmn: Solutions to Eq. (20) are obtained using a
combination of spectral and shooting methods which are described in Ref. [9].

3. Sound power in a non-uniform flow

The transport of energy by small-amplitude disturbances is governed by the conservation
equation [16]

@E

@t
þr 	 ~II ¼ G; ð21Þ
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where the energy density, E; the energy flux vector, ~II ; and source term, G; are defined by

E �
p0r0

2r0
þ ðr0juj

2 þ r0~uu 	 ~UU 0Þ; ð22Þ

~II �
p0

r0
þ~uu 	 ~UU 0

� �
ðr0~uu þ r0 ~UU Þ; ð23Þ

G �~uu 	 ½~UU 0  ðr0~zz
0 �~zz0r0Þ� þ

ð~uu þ r0

r0
~UU 0Þ

r0
	 ðr0rp0 � p0rr0Þ

þ
1

2r0
r0
@p0

@t
� p0

@r0

@t

� �
:

From Eq. (8), the mean radial velocity is zero and the term, r
0

r0
~UU 0 	 ðr0rp0 � p0rr0Þ vanishes. Note

that the expressions for the energy and energy flux are second order expressions which depend
only on first order quantities. As a result, the energy of the unsteady disturbances can be
computed as a by-product of the linearized Euler equations. Expressing the last four terms in G in
terms of the entropy, Eq. (21) becomes

@E

@t
þr 	 ~II ¼~uu 	 ~UU 0  ðr0~zz

0 �~zz0r0Þ þ
1

cp

ðp0rS0 � s0rp0Þ
� �

þ
c20
2cp

r0
@s0

@t
� s0

@r0

@t

� �
: ð24Þ

Eq. (24) shows that the disturbance field interacts with the mean flow and mean flow gradients to
transfer energy between the mean flow and the propagating disturbances. Determining the terms
on the right side of Eq. (24) is difficult because the unsteady perturbations are a small part of the
total flow energy and there is no proof of completeness for a modal representation of the total
unsteady flow.

3.1. Acoustic energy: high-frequency limit

In fan engine aeroacoustic calculations, the frequencies of the noise source are often high. For
example, in tone noise the frequency is nBO where n is the harmonic index, B is the number of
blades and O is the shaft rotation frequency. As a result, the characteristic acoustic wavelength is
c ¼ cm=ðnBOÞ ¼ rm=ðnBMmÞ; where Mm is the rotational Mach number at the mean radius of the
fan. However, variations in the mean flow are characterized by the mean radius of the duct. In the
high-frequency limit, c=rm51; the vorticity content of the acoustic waves is small [6]. To examine
the relative order of the various terms in Eq. (24), we introduce the fast variables

*~xx ¼ ~xx=e; *t ¼ t=e; ð25Þ

where e ¼ c=rm51: Substituting the fast variables into the linearized energy equation we obtain

D0

D*t
s0 þ eð~uu 	 *rÞS0 ¼ 0; ð26Þ
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where D0=D*t � @=@*t þ ~UU 0 	 *r and *r ¼ er: Eq. (26) shows that to leading order the unsteady
entropy field is convected with the mean flow,

D0

D*t
s0 ¼ 0; ð27Þ

over the small distance c and that, if there is no source of entropy or entropy disturbances are not
imposed upstream, the entropy disturbances generated by the mean entropy gradients in the flow
will not contribute to the leading order unsteady field. Note that for isentropic flows Eq. (27) is
exactly satisfied as is shown in Eq. (6).
Substituting Eq. (25) into Eq. (24), we obtain to leading order

@E

@*t
þ *r 	 ~II ¼ ~uu 	 ½r0ð~UU 0 

~*z*z0Þ� þ
c20
2cp

r0
@s0

@*t
� s0

@r0

@*t

� �
: ð28Þ

Note that
~*z*z0 ¼ e~zz0 is Oðj~uujÞ: Eq. (28) shows that the acoustic intensity is no longer a conserved

quantity as a consequence of the unsteady entropy and the interaction between the unsteady

vorticity and the mean flow. For propagating acoustic waves, numerical results [6] suggest
~*z*z0 is

small and from Eq. (26) S0 is Oðej~uujÞ: As a result, the acoustic intensity is locally conserved over a
distance, OðcÞ; which is small relative to the mean radius. In the general case, the disturbance field
contains both acoustic and vortical parts. However, in the high-frequency limit, the two parts can
be decoupled [6] since the pressure field associated with the nearly convected modes is small. Thus,
taking only the acoustic part of the disturbance field and substituting into Eq. (28) we find that the
acoustic energy is locally conserved, i.e.,

@E

@*t
þ *r 	 ~II

� �
A

¼ 0; ð29Þ

where the subscript A denotes the acoustic part of the unsteady field.

3.1.1. The modal expression for the sound power

In this section, we express the sound power in terms of the propagating acoustic modes. Due to
the non-orthogonality of the modes, interference terms exist in the sound power expression. When
calculating the sound energy in an annular duct, we are interested in the mean flux of acoustic
energy across an axial plane. The axial component of the intensity is expressed as

Ix ¼ ðp0=r0 þ Mxux þ MsuyÞðr0ux þ Mxp0ÞsgnðnÞ; ð30Þ

where sgnðnÞ ¼ 1 for downstream propagating disturbances and sgnðnÞ ¼ �1 for upstream
propagating disturbances. Note the expression for the axial intensity has two terms which contain
the swirl velocity. Substituting Eq. (11) into Eq. (30) and integrating across the axial surface we
obtain the sound power in the duct,

P ¼ pR
Xn¼Nr

n¼1

Xn¼Nr

n0¼1

Xm¼Ny

m¼1

sgnðnÞeiðkmn�kmn0 Þx
Z rt=rm

rh=rm

r 1þ
M2

x

c20

� �
pmnX n

mn0

�(

þ
Mx

r0c
2
0

pmnpn

mn0 þ
MxMs

c20
pmnTn

mn0 þ r0MxXmnXn

mn0 þ r0MsXmnTn

mn0

�
dr



; ð31Þ
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where Nr and Ny are the number of radial and circumferential propagating modes, * is used to
denote the complex conjugate and R denotes the real part. Eq. (31) shows that for each
circumferential mode, m; and radial mode, n; we sum the various contributions for each n0: Those
radial modes for which n0an are referred to as interference terms and those modes for which
n0 ¼ n are non-interference terms.
When the mean flow is potential and isentropic, the time-averaged intensity flux is conserved.

However, in a swirling mean flow, the eigenfunctions are not orthogonal. As a result, interference
occurs between different radial modes. Note that the sound power varies with x for the
interference modes nan0: Thus, the conservation of sound power requires that the sum of the
modal powers corresponding to the interference modes must be zero, i.e.,Xn¼Nr

n¼1

Xn¼Nr

n0¼1

Z rt=rm

rh=rm

r 1þ
M2

x

c20

� �
pmnX n

mn0 þ
Mx

r0c
2
0

pmnpn

mn0 þ
MxMs

c20
pmnun

mn0y

�

þ r0MxXmnX n

mn0 þ r0MsXmnTn

mn0

�
dr ¼ 0; nan0: ð32Þ

In the next section, we examine the extent to which Eq. (32) is satisfied for a variety of mean flow
and determine which of the terms in Eq. (31) are the major contributors to the sound power.

4. Numerical results for swirling flow

We examine the effect of mean flow swirl on the modal sound power. For simplicity, we start by
considering swirl distributions which consist of a linear combination of free vortex and rigid body
swirl. In this case, the mean flow swirl distribution is characterized by a circulation, G; and a rigid
body swirl defined by the angular velocity O: The swirl Mach number takes the form

Ms ¼ MO þ MG; ð33Þ

where MO ¼ Or=cm and MG ¼ G=ðrcmÞ: If we further assume uniform enthalpy from hub to tip
and isentropic flow, the axial component of velocity takes the form

M2
x ¼ M2

xm � 2½O2ðr2 � 1Þ þ 2OG lnðrÞ�; ð34Þ

where Mxm is the axial Mach number at the mean radius of the duct. In the final subsection, we
consider a mean flow profile with a non-uniform total enthalpy distribution.
In Section 4.1, we examine the case of free vortex swirl and in Section 4.2 we compute the modal

power for a combination of free vortex and rigid body swirl to examine the degree to which
coupling between vortical and acoustic disturbances modifies the conservation relation (29). In all
cases, 100 points are used from hub to tip to compute the normal modes and the modal power.
Finally in Section 4.3, a mean flow profile with non-uniform total enthalpy and swirl is studied.

4.1. A free vortex swirling flow

In a free vortex swirling flow, the acoustic disturbances propagating in a duct are purely
potential and conserve acoustic energy exactly. We first examine this case and compute the
contributions to the modal sound power from each of the terms in Eq. (31) to determine the major
contributions to the sound power. The free vortex swirl distribution is shown in Fig. 2. In this
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case, the swirl velocity parameters are chosen so that MO ¼ 0 and MG at the hub is 0.52. The plot
shows that the annulus extends from a non-dimensional radius of 0.8 to 2.0 and the swirl Mach
number is inversely proportional to the radius. To conserve sound power, the sum of the
contribution of each interference term in Eq. (32) must be zero so that there is no x-dependence in
the sound power. Thus, although the eigenfunctions are not orthogonal, the summed contribution
of the interference terms to the sound power should be negligible.
In Fig. 3, we show the contributions of each of the terms in the integral for the downstream

propagating modes corresponding to a case with reduced frequency, o ¼ 20 and spinning mode
order, m ¼ �1: For example, the contribution of the first term,

R rt=rm

rh=rm
rð1þ M2

x

c2
0

ÞpmnXn
mn0 dr; for a

given o; m and n is shown in each plot for each n0: The open circle, þ and * correspond to the
contributions of the first three terms in Eq. (32), respectively, and the x and diamond correspond
to the fourth and fifth terms. The abscissa corresponds to the radial mode index n0 and the
ordinate represents the contribution of each term. The different figures correspond to different
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Fig. 2. Free vortex swirl distribution for a duct with hub–tip ratio of 0.4: (a) axial Mach number; (b) swirl Mach

number.
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radial mode orders, n; for a given spinning mode order, m: The index, n; describes the
eigenfunction which has n � 1 zero crossings from the inner radius to the outer radius.
In this case, there exist six propagating modes. The contribution of the interference terms are

quite small relative to the non-interference terms, n ¼ n0: Also, the dominant contributions to the
power result from the contributions of the first, second and fourth terms. For the highest order
radial mode, n ¼ 6; the first two terms contribute the most to modal power. As the mode order
decreases, the contribution of the first term increases rapidly from a value of 0.25 to nearly one.
The second term does not change appreciably for the various mode orders but the contribution of
the fourth term becomes significant for the lower order radial modes. For this case, with low

ARTICLE IN PRESS

2 4 6

0

0.2

0.4

0.6

0.8

1

Mode index (nprime)

M
o
d
a
l 
P

o
w

e
r 

C
o
n
tr

ib
u
ti
o
n
s

m=-1,n=6

2 4 6

0

0.2

0.4

0.6

0.8

1

Mode index (nprime)

m=-1,n=5

2 4 6

0

0.2

0.4

0.6

0.8

1

Mode index (nprime)

m=-1,n=4

2 4 6

0

0.2

0.4

0.6

0.8

1

Mode index (nprime)

M
o
d
a
l 
P

o
w

e
r 

C
o
n
tr

ib
u
ti
o
n
s

m=-1,n=3

2 4 6

0

0.2

0.4

0.6

0.8

1

Mode index (nprime)

m=-1,n=2

2 4 6

0

0.2

0.4

0.6

0.8

1

mode index (nprime)

m=-1,n=1

(d) (e) (f)

(c)(b)(a)
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spinning mode order, m ¼ �1; the third and fifth terms which contain the swirl component of the
mean velocity produce negligible contributions to the modal power. Summing the interference
terms of the six modes we find the contribution is approximately 0.002 for each n ¼ 1; 2;y; 6 as
opposed to the non-interference terms which result in a summed contribution of 7.3 to the power.
In Fig. 4, we consider a case with a reduced frequency of 30 and a larger spinning mode order,

m ¼ �16: In this case, there exist 10 propagating modes which are again ordered based on the
number of zero crossings that occur between the hub and the tip. We show the first six upstream
propagating modes which range from n ¼ 1 to n ¼ 6 in Fig. 4. Again the first, second and fourth
terms contribute the most to the sound power. As in the previous case, the contribution of the
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Fig. 4. Contributions of each term in Eq. (31) for the sound power of the upstream propagating duct modes. The mean

flow swirl is free vortex and the axial velocity is constant. The reduced frequency is o ¼ 30 and m ¼ �16: The abscissa
is the radial mode index, n0 and each figure corresponds to the contribution of each radial mode n: The open circle, þ;
and * correspond to the contributions of the first three terms in Eq. (31) and the x and diamond correspond to the

fourth and fifth terms. (a)–(c) in the top row going from left to right correspond to n ¼ 6; 5; 4 in descending order and
(d)–(f) in the bottom row going from left to right correspond to n ¼ 3; 2; 1:
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fourth term increases slightly for the lower radial modes. Note that the contribution of the first
term is negative because we are considering the upstream propagating modes and so the sgnðnÞ ¼
�1 is yielding a positive sound power. Interference between the different radial modes is observed
but the magnitude of the interference terms is small. The maximum contribution of the
interference terms is 0.01. Interestingly, if we neglect the x-dependence and sum over all the modes
nan0; the summed contribution is zero to four significant digits. This is in contrast to the non-
interference terms, n ¼ n0; whose summed contribution is 2.77. The most significant interference
contributions occurred from the modes adjacent to the n ¼ n0 mode.
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Fig. 5. Contributions of each term in Eq. (31) to the sound power of the upstream propagating duct modes. The mean

flow swirl is free vortex and the axial velocity is constant. The reduced frequency is o ¼ 24:5 and m ¼ �28: The abscissa
is the radial mode index, n0 and each figure corresponds to the contribution of each radial mode n: The open circle, þ;
and * correspond to the contributions of the first three terms in Eq. (31) and the x and diamond correspond to the

fourth and fifth terms. (a)–(c) in the top row going from left to right correspond to n ¼ 6; 5; 4 in descending order and
(d)–(f) in the bottom row going from left to right correspond to n ¼ 3; 2; 1:
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We next consider a case with reduced frequency, 24.5 and spinning mode order m ¼ �28 and
look at the contributions to the sound power of the upstream propagating modes. In Fig. 5, we
show the modal power contributions for each term in Eq. (31). In this case, the swirl Mach
number plays a more significant role in the modal power. The third term in Eq. (31) is most
significant for the higher order radial modes. Contributions from the interference terms are more
evident in this case. However, when each of the terms in Eq. (31) is accounted for their maximum
contributions remain small, i.e., 0.01. This is in contrast to the non-interference terms, n ¼ n0;
whose summed contribution is 1.77. If we neglect the x-dependence and sum over all the modes
nan0; the summed contribution is again zero to four significant digits.
In each of the three cases considered the numerical calculation of the sound power shows that it

is nearly conserved. This is consistent with the potential mean flow used. In the next section, we
consider a vortical mean flow where the sound power is not strictly conserved and examine, for
high frequencies, the extent to which it is not conserved.
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4.2. Numerical results for a mean flow with streamwise vorticity

We now consider a vortical mean flow that is a linear combination of rigid body and free vortex
swirl. The mean flow velocity distribution is shown in Fig. 6. In this case, the swirl velocity
parameters were chosen so that MO ¼ 0:11 and MG ¼ 0:17 at the hub. As a result of the mean
flow vorticity, the sound power is not strictly conserved and we expect interference effects to be
more significant than the potential mean flow cases considered above. In Fig. 7, we show the
contributions of each of the terms in the integral for the upstream propagating modes
corresponding to a case with reduced frequency, o ¼ 20 and spinning mode order, m ¼ �11:
Again, the open circle, þ and * correspond to the contributions of the first three terms in Eq. (32),
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Fig. 7. Contributions of each term in Eq. (31) to the sound power of the upstream propagating duct modes. The mean

flow is a combination of free vortex and rigid body swirl. The reduced frequency is o ¼ 20 andm ¼ �11: The abscissa is
the radial mode index, n0 and each figure corresponds to the contribution of each radial mode n: The open circle, þ; and
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respectively, and the x and diamond correspond to the fourth and fifth terms. The abscissa
corresponds to the radial mode index n0 and the ordinate represents the contribution of each term.
The different figures correspond to different radial mode orders, n for a given spinning mode
order, m: The index, n; describes the eigenfunction which has n � 1 zero crossings from the hub to
tip. In this case, there exist six propagating modes. As in the previous cases, the dominant
contribution to the sound power comes from the first three terms in Eq. (32). The higher order
modes ðn ¼ 6; 5; 4Þ show significant contributions from the interference modes n0 ¼ n71: The
contributions of the other interference modes quickly decreases as jn0 � nj increases. Fig. 7 shows
that the interference terms although large nearly cancel because the open circle in almost equal in
magnitude but opposite in sign to the þ and x: As a result, the contributions of the interference
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modes result in small modifications to the modal power of approximately 0.01 for each nan0: The
summed contribution of the non-interference modes is 1.816. Fig. 8 shows the contributions of
each of the terms in the integral for the upstream propagating modes corresponding to a case with
lower reduced frequency, o ¼ 12; and spinning mode order, m ¼ �11: Due to the lower
frequency, there are only three propagating modes. Even for this frequency, the contributions of
the interference modes largely cancel and result in modifications to the modal power of
approximately 0.01 for n ¼ 1; 2; 3; respectively. The summed contribution of the non-interference
modes is 0.705.

4.3. Numerical results for a mean flow with non-uniform enthalpy

In this subsection, we compute the modal power in a mean flow where the mean flow vorticity
does not lie completely in the streamwise direction. In this case, the total enthalpy varies from hub
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to tip. The mean flow profiles for the velocity and total enthalpy are shown in Fig. 9. The swirl
velocity increases with radius like the rigid body swirl case for r=rmo1 and decreases with radius
for r=rm > 1 like the free vortex swirl case. However, unlike those cases, the total temperature
varies from hub to tip. Fig. 10 shows the contributions of each of the terms in the integral for the
upstream propagating modes corresponding to a case with lower reduced frequency, o ¼ 35; and
spinning mode order, m ¼ �10: At this reduced frequency, there are six propagating modes.
The contributions of the interference modes are much smaller than the non-interference terms,
again showing that the effect of the mean flow vorticity only slightly modifies the acoustic modal
power.
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5. Conclusions

An expression for the sound power was derived which is valid for non-uniform flows. For high-
frequency disturbances, the propagation of sound energy is locally conserved. The dominant
contributions to the sound power were computed for several mean flows. These results can be used
to determine the major modal contributors to the sound power and determine the strength of the
interaction between the mean flow and the acoustic waves. For the case of a free vortex mean flow
swirl, interference effects were negligible. For the case of a vortical mean flow, interference effects
are more significant but remain relatively small for large reduced frequencies in agreement with the
high-frequency analysis presented in the paper. The conservation of the outgoing sound power can
be used as a check on computational aeroacoustic schemes, which apply non-reflecting inlet/exit
boundary conditions, to accurately propagate sound energy out of the computational domain.
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